sábado, 4 de fevereiro de 2017

O NÚMERO DE OURO


Um número irracional bem conhecido por suas inúmeras aplicações e curiosidades é o número de ouro, frequentemente representado pela letra grega F ( lê-se: fi ) , cujo valor é 1,61803... .

  Na escola pitágorica grega ( século V a.C. ), era bastante difundida a ideia de dividir um segmento em média e extrema razão. Basicamente, era preciso dividir um segmento em duas partes, tais que a razão entre as medidas da parte menor e da maior fosse igual à razão entre as medidas da parte menor e da parte maior fosse igual à razão entre as medidas da maior parte e o segmento total. Assim, para dividir um segmento MN de medida Z conhecida nessa razão, é preciso determinas o ponto P tal que:


                                          Pitágoras (570 a.C. 497 a.C.)foi um filósafo e
                                        matemático grego, fundador da chamada escola
                                        pitagórica de pensamento.
                                        (Museu Capitolino, Roma).

  Provavelmente os pitagóricos usavam um método geométrico para fazer tal divisão, uma vez que não reconheciam os números irracionais, pois acreditavam que a razão entre as medidas de dois segmentos quaisquer poderia expressar como quociente de dois números naturais.

  Um Retângulo áureo é aquele em que a razão entre as medidas de suas dimensões é F = 1,618... . Os gregos usavam essa razão como critério estético. Até hoje acredita-se ser essa a razão mais harmoniosa entre as medidas de comprimento e da largura de um retângulo. Os cartões bancários atuais, por exemplo, são confeccionados de modo que a razão entre suas medidas seja, aproximadamente, igual a 1,6. O Partenon, em Athenas, construído no século V a.C., tem o contorno imaginário de um retângulo áureo. O símbolo F é a inicial de Fídias, escultor encarregado da construção do Partenon.

             
O Partenon, um dos monumentos mais famosos
do mundo, foi construído no século V a.C. em
homenagem á deusa Atena.

    Na Idade Média, a razão áurea aparece na obra Liber Abaci (1202), de Fibonacci. Já na Renascença italiana, a obra De divina proportione, de Luca Pacioli (1509), diz respeito a essa razão. Nasartes, a famosa mona lisa ( ou La Gioconda ), de Leonardo da Vinci (1452 – 1519), utiliza o número F nas relações entre seu tronco e cabeça e também entre os elementos do rosto. Se construirmos um retângulo em torno de seu rosto, veremos que se trata de um retângulo áureo. Não menos famosa a obra O homem vitruviano, do mesmo autor, traz as anatômicas de simetria e beleza do corpo humano. ( Por exemplo, a razão entre a medida da altura do corpo e a medida do umbigo até o chão é, aproximadamente, igual a  F ).

Um comentário: